extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C22).1C23 = C2×D4⋊2D11 | φ: C23/C2 → C22 ⊆ Aut C2×C22 | 176 | | (C2xC22).1C2^3 | 352,178 |
(C2×C22).2C23 = D4⋊6D22 | φ: C23/C2 → C22 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).2C2^3 | 352,179 |
(C2×C22).3C23 = C4○D4×D11 | φ: C23/C2 → C22 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).3C2^3 | 352,183 |
(C2×C22).4C23 = D4⋊8D22 | φ: C23/C2 → C22 ⊆ Aut C2×C22 | 88 | 4+ | (C2xC22).4C2^3 | 352,184 |
(C2×C22).5C23 = D4.10D22 | φ: C23/C2 → C22 ⊆ Aut C2×C22 | 176 | 4- | (C2xC22).5C2^3 | 352,185 |
(C2×C22).6C23 = C4○D4×C22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).6C2^3 | 352,191 |
(C2×C22).7C23 = C11×2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 88 | 4 | (C2xC22).7C2^3 | 352,192 |
(C2×C22).8C23 = C11×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | 4 | (C2xC22).8C2^3 | 352,193 |
(C2×C22).9C23 = C4×Dic22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).9C2^3 | 352,63 |
(C2×C22).10C23 = C44⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).10C2^3 | 352,64 |
(C2×C22).11C23 = C44.6Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).11C2^3 | 352,65 |
(C2×C22).12C23 = C42×D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).12C2^3 | 352,66 |
(C2×C22).13C23 = C42⋊D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).13C2^3 | 352,67 |
(C2×C22).14C23 = C4×D44 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).14C2^3 | 352,68 |
(C2×C22).15C23 = C4⋊D44 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).15C2^3 | 352,69 |
(C2×C22).16C23 = C4.D44 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).16C2^3 | 352,70 |
(C2×C22).17C23 = C42⋊2D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).17C2^3 | 352,71 |
(C2×C22).18C23 = C23.11D22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).18C2^3 | 352,72 |
(C2×C22).19C23 = C22⋊Dic22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).19C2^3 | 352,73 |
(C2×C22).20C23 = C23.D22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).20C2^3 | 352,74 |
(C2×C22).21C23 = C22⋊C4×D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 88 | | (C2xC22).21C2^3 | 352,75 |
(C2×C22).22C23 = Dic11⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).22C2^3 | 352,76 |
(C2×C22).23C23 = C22⋊D44 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 88 | | (C2xC22).23C2^3 | 352,77 |
(C2×C22).24C23 = D22.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).24C2^3 | 352,78 |
(C2×C22).25C23 = D22⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).25C2^3 | 352,79 |
(C2×C22).26C23 = Dic11.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).26C2^3 | 352,80 |
(C2×C22).27C23 = C22.D44 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).27C2^3 | 352,81 |
(C2×C22).28C23 = Dic22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).28C2^3 | 352,82 |
(C2×C22).29C23 = C44⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).29C2^3 | 352,83 |
(C2×C22).30C23 = Dic11.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).30C2^3 | 352,84 |
(C2×C22).31C23 = C44.3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).31C2^3 | 352,85 |
(C2×C22).32C23 = C4⋊C4×D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).32C2^3 | 352,86 |
(C2×C22).33C23 = C4⋊C4⋊7D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).33C2^3 | 352,87 |
(C2×C22).34C23 = D44⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).34C2^3 | 352,88 |
(C2×C22).35C23 = D22.5D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).35C2^3 | 352,89 |
(C2×C22).36C23 = C4⋊2D44 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).36C2^3 | 352,90 |
(C2×C22).37C23 = D22⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).37C2^3 | 352,91 |
(C2×C22).38C23 = D22⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).38C2^3 | 352,92 |
(C2×C22).39C23 = C4⋊C4⋊D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).39C2^3 | 352,93 |
(C2×C22).40C23 = C2×C4×Dic11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).40C2^3 | 352,117 |
(C2×C22).41C23 = C2×Dic11⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).41C2^3 | 352,118 |
(C2×C22).42C23 = C44.48D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).42C2^3 | 352,119 |
(C2×C22).43C23 = C2×C44⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).43C2^3 | 352,120 |
(C2×C22).44C23 = C23.21D22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).44C2^3 | 352,121 |
(C2×C22).45C23 = C2×D22⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).45C2^3 | 352,122 |
(C2×C22).46C23 = C4×C11⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).46C2^3 | 352,123 |
(C2×C22).47C23 = C23.23D22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).47C2^3 | 352,124 |
(C2×C22).48C23 = C44⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).48C2^3 | 352,125 |
(C2×C22).49C23 = D4×Dic11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).49C2^3 | 352,129 |
(C2×C22).50C23 = C23.18D22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).50C2^3 | 352,130 |
(C2×C22).51C23 = C44.17D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).51C2^3 | 352,131 |
(C2×C22).52C23 = C23⋊D22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 88 | | (C2xC22).52C2^3 | 352,132 |
(C2×C22).53C23 = C44⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).53C2^3 | 352,133 |
(C2×C22).54C23 = Dic11⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).54C2^3 | 352,134 |
(C2×C22).55C23 = C44⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).55C2^3 | 352,135 |
(C2×C22).56C23 = Dic11⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).56C2^3 | 352,139 |
(C2×C22).57C23 = Q8×Dic11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).57C2^3 | 352,140 |
(C2×C22).58C23 = D22⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).58C2^3 | 352,141 |
(C2×C22).59C23 = C44.23D4 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).59C2^3 | 352,142 |
(C2×C22).60C23 = C2×C23.D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).60C2^3 | 352,147 |
(C2×C22).61C23 = C24⋊D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 88 | | (C2xC22).61C2^3 | 352,148 |
(C2×C22).62C23 = C22×Dic22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).62C2^3 | 352,173 |
(C2×C22).63C23 = C22×C4×D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).63C2^3 | 352,174 |
(C2×C22).64C23 = C22×D44 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).64C2^3 | 352,175 |
(C2×C22).65C23 = C2×D44⋊5C2 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).65C2^3 | 352,176 |
(C2×C22).66C23 = C2×Q8×D11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).66C2^3 | 352,180 |
(C2×C22).67C23 = C2×D44⋊C2 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | | (C2xC22).67C2^3 | 352,181 |
(C2×C22).68C23 = Q8.10D22 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 176 | 4 | (C2xC22).68C2^3 | 352,182 |
(C2×C22).69C23 = C23×Dic11 | φ: C23/C22 → C2 ⊆ Aut C2×C22 | 352 | | (C2xC22).69C2^3 | 352,186 |
(C2×C22).70C23 = C22⋊C4×C22 | central extension (φ=1) | 176 | | (C2xC22).70C2^3 | 352,150 |
(C2×C22).71C23 = C4⋊C4×C22 | central extension (φ=1) | 352 | | (C2xC22).71C2^3 | 352,151 |
(C2×C22).72C23 = C11×C42⋊C2 | central extension (φ=1) | 176 | | (C2xC22).72C2^3 | 352,152 |
(C2×C22).73C23 = D4×C44 | central extension (φ=1) | 176 | | (C2xC22).73C2^3 | 352,153 |
(C2×C22).74C23 = Q8×C44 | central extension (φ=1) | 352 | | (C2xC22).74C2^3 | 352,154 |
(C2×C22).75C23 = C11×C22≀C2 | central extension (φ=1) | 88 | | (C2xC22).75C2^3 | 352,155 |
(C2×C22).76C23 = C11×C4⋊D4 | central extension (φ=1) | 176 | | (C2xC22).76C2^3 | 352,156 |
(C2×C22).77C23 = C11×C22⋊Q8 | central extension (φ=1) | 176 | | (C2xC22).77C2^3 | 352,157 |
(C2×C22).78C23 = C11×C22.D4 | central extension (φ=1) | 176 | | (C2xC22).78C2^3 | 352,158 |
(C2×C22).79C23 = C11×C4.4D4 | central extension (φ=1) | 176 | | (C2xC22).79C2^3 | 352,159 |
(C2×C22).80C23 = C11×C42.C2 | central extension (φ=1) | 352 | | (C2xC22).80C2^3 | 352,160 |
(C2×C22).81C23 = C11×C42⋊2C2 | central extension (φ=1) | 176 | | (C2xC22).81C2^3 | 352,161 |
(C2×C22).82C23 = C11×C4⋊1D4 | central extension (φ=1) | 176 | | (C2xC22).82C2^3 | 352,162 |
(C2×C22).83C23 = C11×C4⋊Q8 | central extension (φ=1) | 352 | | (C2xC22).83C2^3 | 352,163 |
(C2×C22).84C23 = Q8×C2×C22 | central extension (φ=1) | 352 | | (C2xC22).84C2^3 | 352,190 |